Protista(Yunani, Protos = Pertama) merupakan organisme eukariot pertama atau paling sederhana. Sebagai organisme eukariotik, protista memiliki membrane inti sel. Kajian evolusi menyatakan bahwa protista merupakan organisme eukariotik yang paling awal (tertua). Protista pertama kali muncul di permukaan bumi sekitar 1,5 juta tahun yang lalu.
EQadalah bagaimana cara keluarga tersebut mendidik emosional anaknya sejak dini agak terbentuk suatu karakter yang baik yang dapat mengendalikan emosi dengan baik,dan juga keluarga memiliki peranan penting untuk menjalin kedekatan emosional dengan anaknya,mampu mengontrol emosi. Berdasarkan cara memperoleh makanannya, fungi mempunyai sifat
Bagaimanacara metanogen memperoleh makanan?. Question from @Caluellacherry - Sekolah Menengah Atas - Biologi
Fast Money. - Bakteri Cyanobacteria juga dikenal sebagai Cyanophyta yang apabila dalam bahasa Indonesia disebut sianobakteri cyanobacteria atau ganggang biru adalah bakteri yang dapat berfotosintesis serta sebagian memiliki tubuh berbentuk benang seperti ganggang. Akan tetapi, Cyanobacteria bukanlah ganggang yang sebenarnya karena bersifat prokariotik, sedangkan ganggang memiliki sel eukariotik. Cyanobacteria merupakan salah satu anggota dari Eubacteria. Adapun point pokok penjelasan yang akan dibahas seputar klasifikasi cyanobacteria yakni struktur bakteri cyanobacteria, ciri-ciri cyanobacteria, bagaimana cara hidup bakteri cyanobacteria dan habitat cyanobacteria serta peranan bakteri cyanobacteria lengkap beserta contoh dan gambaran bakteri cyanobacteria yang akan dijelaskan di dalam materi biologi berikut ini. Ciri-ciri cyanobacteria Di bawah ini terdapat beberapa ciri-ciri bakteri cyanobacteria adalah antara lain sebagai berikut Uniseluler sel tunggal. Tubuh bakteri ini ada yang berbentuk filamen atau benang multiseluler dan berbentuk bulat soliter serta juga berkoloni uniseluler. Ukuran tubuh berkisar 1-60 pikometer sehingga mudah diamati dengan mikroskop. Dinding sel mengandung peptidoglikan. Membran sel bersifat selektif permeabel. Lapisan lendir yang menyelimuti dinding sel dan lain-lain. Cara hidup cyanobacteria Bakteri cyanobacteria hidup secara bebas meskipun bersimbiosis mutualisme dengan organisme lainnya. Hal ini terjadi karena cyanobacteria adalah organisme fotoautotrof yang mampu membuat makanannya sendiri fotosintesis dengan menggunakan karbon dioksida, amonia, nitrit, nitrat dan ion organik fosfat. Perlu diketahui bahwa cyanobacteria memiliki kesamaan dengan ganggang alga yakni memiliki klorofil a yang berfungsi sebagai sumber elektron dan mereduksi karbondioksida menjadi karbohidrat. Habitat cyanobacteria Seperti yang kita ketahui diatas bahwa bakteri cyanobacteria hidup secara bebas dan juga hidup diberbagai habitat yakni diantaranya adalah seperti di air laut, air tawar, sawah, rawa, kolam, tanah dan lain-lain. Populasi cyanobacteria akan tumbuh subur dengan cepat blooming pada saat-saat tertentu ketika jumlah nutrisi di dalam lingkungan sangat mencukupi. Blooming cyanobacteria terjadi di perairan yang mengandung limbah industri atau pertanian yang mengandung kadar nitrogen/fosfat yang tinggi.
Selamat datang Kawan Mastah! Pada artikel kali ini kita akan membahas mengenai bakteri autotrof dan bagaimana cara mereka memperoleh makanan. Bakteri autotrof merupakan jenis bakteri yang dapat membuat makanannya sendiri dengan cara yang cukup unik dan menarik untuk dipelajari. Mari kita simak penjelasannya secara lebih detail di bawah ini. Pengertian Bakteri Autotrof Bakteri autotrof adalah jenis bakteri yang mampu membuat makanannya sendiri melalui proses fotosintesis atau kemosintesis. Bakteri autotrof adalah organisme yang mandiri dalam memenuhi kebutuhan makannya karena mampu mengambil energi dari lingkungan sekitarnya untuk digunakan sebagai bahan dasar pembuatan makanannya. Cara kerja bakteri autotrof dalam memperoleh makanan ini berbeda dari bakteri heterotrof yang memerlukan makanan dari organisme lain untuk hidup. Bakteri autotrof umumnya terdapat pada lingkungan yang memiliki kadar oksigen yang rendah, seperti dalam air atau tanah. Mereka menggunakan berbagai jenis ion atau senyawa kimia dalam air atau tanah sebagai sumber energi untuk membuat makanannya. Beberapa contoh bakteri autotrof yang terkenal antara lain bakteri Nitrosomonas, Rhizobium, dan Chlorobium. Setiap jenis bakteri autotrof memiliki cara kerja dan sumber energi yang berbeda untuk memperoleh makanannya. 1. Fotosintesis Salah satu cara bakteri autotrof memperoleh makanannya adalah melalui proses fotosintesis. Bakteri autotrof yang melakukan fotosintesis menggunakan sinar matahari sebagai sumber energi untuk membuat makanannya. Selain itu, bakteri autotrof juga memanfaatkan zat-zat kimia yang berada di sekitarnya untuk membantu proses pembuatan makanannya, seperti CO2, air, dan mineral. Proses ini dilakukan melalui organel yang disebut dengan kloroplas atau pigmen yang bernama klorofil. Bakteri autotrof yang melakukan fotosintesis antara lain Cyanobacteria dan Rhodospirillum. 2. Kemosintesis Metabolisme kemosintetik selain menggunakan sinar matahari sebagai sumber energi, juga dapat menggunakan sumber energi dari senyawa kimia yang bersifat oksidan atau reduktan. Contoh senyawa kimia yang dapat digunakan oleh bakteri autotrof dalam proses kemosintesis adalah belerang dan besi. Bakteri autotrof yang melakukan kemosintesis adalah bakteri yang hidup di lingkungan yang kaya akan zat-zat kimia yang dapat diubah menjadi sumber energi. Beberapa contoh bakteri autotrof yang melakukan kemosintesis adalah Nitrosomonas, Nitrobacter, Sulfurimonas, dan Methylocystis. Peran Bakteri Autotrof Bakteri autotrof memiliki peran penting dalam siklus biogeokimia. Bakteri autotrof yang melakukan fotosintesis menjadi produsen utama di dalam lingkungan. Tanpa bakteri autotrof, tidak akan ada produsen yang dapat memenuhi kebutuhan energi organisme lain dalam rantai makanan. Bakteri autotrof yang melakukan kemosintesis juga memiliki peran penting dalam menjaga ketersediaan nutrisi dan iklim di lingkungan. Bakteri autotrof yang melakukan kemosintesis dapat mereduksi belerang dan nitrogen menjadi bentuk yang dapat dimanfaatkan oleh organisme lain, sehingga organisme lain dapat tumbuh dan berkembang dengan baik. FAQ Pertanyaan Jawaban Apa itu bakteri autotrof? Bakteri autotrof adalah jenis bakteri yang mampu membuat makanannya sendiri melalui proses fotosintesis atau kemosintesis. Apa perbedaan antara bakteri autotrof dengan bakteri heterotrof? Bakteri autotrof dapat membuat makanannya sendiri menggunakan sumber energi dari lingkungan sekitarnya, sedangkan bakteri heterotrof memerlukan makanan dari organisme lain untuk hidup. Apa saja contoh bakteri autotrof? Beberapa contoh bakteri autotrof adalah Nitrosomonas, Rhizobium, Chlorobium, Cyanobacteria, dan Rhodospirillum. Bagaimana cara kerja bakteri autotrof dalam memperoleh makanan? Bakteri autotrof menggunakan sumber energi dari lingkungan sekitarnya untuk membuat makanannya, melalui proses fotosintesis atau kemosintesis. Apa peran bakteri autotrof dalam siklus biogeokimia? Bakteri autotrof memiliki peran penting sebagai produsen dan menjaga ketersediaan nutrisi dan iklim di lingkungan. Demikianlah pembahasan mengenai bakteri autotrof dan cara mereka memperoleh makanan. Semoga artikel ini dapat menambah pengetahuan kita semua. Terima kasih telah membaca, Kawan Mastah! Bakteri Autotrof Memperoleh Makanan Dengan Cara
Cyanobacteria establish symbiosis with plant groups widely spread within the plant kingdom, including fungi lichenized fungi and one non-lichenized fungus, Geosiphon, bryophytes, a water-fern, one gymnosperm group, the cycads, and one flowering plant the angiosperm, Gunnera [2, 35, 36].From Biology of the Nitrogen Cycle, 2007CyanobacteriaSteven L. Percival, David W. Williams, in Microbiology of Waterborne Diseases Second Edition, 2014AbstractCyanobacteria are Gram-negative bacteria. Five types of cyanobacteria have been identified as toxin producers, including two strains of Anabaena flosaquae, Aphanizomenon flosaquae, Microcystis aeruginosa and Nodularia species. Cyanobacterial toxins are of three main types hepatotoxins, neurotoxins and lipopolysaccharide LPS endotoxins. Acute illness following consumption of drinking water contaminated by cyanobacteria is more commonly gastroenteritis. Cyanobacteria are not dependent on a fixed source of carbon and, as such, are widely distributed throughout aquatic environments. These include freshwater and marine environments and in some soils. Direct microscopic examination of bloom material will allow identification of the cyanobacterial species present. Preventing the formation of blooms in the source water is the best way to assure cyanobacteria-free drinking water and membrane filtration technology has the potential to remove virtually any cyanobacteria or their toxins from drinking water. Cyanobacteria have the ability to grow as chapter discusses Cyanobacteria, including aspects of its basic microbiology, natural history, metabolism and physiology, clinical features, pathogenicity and virulence, survival in the environment, survival in water and epidemiology, evidence for growth in a biofilm, methods of detection, and finally, risk full chapterURL Vincent, in Encyclopedia of Inland Waters, 2009Cyanobacteria also called blue-green algae are an ancient group of photosynthetic microbes that occur in most inland waters and that can have major effects on the water quality and functioning of aquatic ecosystems. They include about 2000 species in 150 genera, with a wide range of shapes and sizes. Cyanobacteria have a variety of cell types, cellular structures, and physiological strategies that contribute to their ecological success in the plankton, metaphyton, or periphyton. They are of special interest to water quality managers because many produce taste and odor compounds, several types of toxins, and noxious blooms. Ecologically, the three most important groups of cyanobacteria found in inland waters are mat-formers, which form polysaccharide-rich crusts, films, and thicker layers over rocks, sediments, and plants; bloom-formers, which occur in eutrophic lakes and cause food web disruption as well as produce toxins and surface scums; and picocyanobacteria, minute species that are often the main photosynthetic cell type in oligotrophic nutrient-poor lakes and their microbial food webs. Additional ecological groups include the metaphyton that is loosely associated with emergent macrophytes; colonial aggregates of cyanobacteria that are common in mesotrophic waters; and various symbiotic associations. Several inland water species of cyanobacteria are harvested or cultivated as food sources, animal feeds, fertilizers, and health full chapterURL Garcia-Pichel, in Encyclopedia of Microbiology Third Edition, 2009IntroductionCyanobacteria constitute a phylogenetically coherent group of evolutionarily ancient, morphologically diverse, and ecologically important phototrophic bacteria. They are defined by their ability to carry out oxygenic photosynthesis water-oxidizing, oxygen-evolving, plant-like photosynthesis. With few exceptions, they synthesize chlorophyll a as major photosynthetic pigment and phycobiliproteins as light-harvesting pigments. All are able to grow using CO2 as the sole source of carbon, which they fix using primarily the reductive pentose phosphate pathway. Their chemoorganotrophic potential is restricted to the mobilization of reserve polymers mainly glycogen during dark periods, although some strains are known to grow chemoorganotrophically in the dark at the expense of external sugars. As a group, they display some of the most sophisticated morphological differentiation among the bacteria, and many species are truly multicellular organisms. Cyanobacteria have left fossil remains as old as 2000–3500 million years, and they are believed to be ultimately responsible for the oxygenation of Earth’s atmosphere. During their evolution, through an early symbiotic partnership, they gave rise to the plastids of algae and higher plants. Today cyanobacteria make a significant contribution to the global primary production of the oceans and become locally dominant primary producers in many extreme environments, such as hot and cold deserts, hot springs, and hypersaline environments. Their global biomass has been estimated to exceed 1015 g of wet biomass, most of which is accounted for by the marine unicellular genera Prochlorococcus and Synechococcus, the filamentous genera Trichodesmium a circumtropical marine form, as well as the terrestrial Microcoleus vaginatus and Chroococcidiopsis sp. of barren lands. Blooms of cyanobacteria are important features for the ecology and management of many eutrophic fresh and brackish water bodies. The aerobic nitrogen-fixing capacity of some cyanobacteria makes them important players in the biogeochemical nitrogen cycle of tropical oceans, terrestrial environments, and in some agricultural lands. Because of their sometimes large size, their metabolism, and their ecological role, the cyanobacteria were long considered algae; even today it is not uncommon to refer to them as blue-green algae, especially in ecological the possible exception of their capacity for facultative anoxygenic photosynthesis, cyanobacteria in nature are all oxygenic photoautotrophs. It can be logically argued that after the evolutionary advent of oxygenic photosynthesis, the evolutionary history of cyanobacteria has been one geared toward optimizing and extending this metabolic capacity to an increasingly large number of habitats. This article provides an overview of the characteristics of their central metabolism and a necessarily limited impression of their diversity. Generalizations might, in the face of such diversity, easily become simplifications. Whenever they are made, the reader is reminded to bear this in full chapterURL Puschner DVM, PhD, DABVT, Caroline Moore BS, in Small Animal Toxicology Third Edition, 2013Minimum Database and Confirmatory TestsAs with other suspect cyanobacteria intoxications, algal identification in water samples or in samples collected from the animal’s skin or gastric contents greatly assists with the diagnostic workup. Algal-containing samples should be chilled, not frozen, preserved in 10% formalin v/v 5050, and submitted to a phycologist for identification. As toxicity of cyanotoxins is strain-specific, positive identification does not predict the hazard homoanatoxin-a, and anatoxin-as poisonings do not result in specific changes in serum chemistry parameters. In fact, because of the rapid progression and death with these neurotoxins, blood work is rarely performed. If available, possible nonspecific changes are hyperglycemia, acidosis, mild hypophosphatemia, and mild respiratory In cases of anatoxin-as poisoning, a depressed blood cholinesterase activity along with an adequate brain cholinesterase activity supports the analyses for algal toxins in biologic specimens are recommended to establish a diagnosis. Anatoxin-a can be analyzed by liquid chromatography and tandem mass spectrometry30 in algal material, water, gastrointestinal contents, urine, and Select veterinary toxicology laboratories can perform analysis of biologic specimens for anatoxin-as.41Read full chapterURL ToxinsK. Sivonen, in Encyclopedia of Microbiology Third Edition, 2009Cyanobacteria General DescriptionCyanobacteria are autotrophic microorganisms that have a long evolutionary history and many interesting metabolic features. Cyanobacteria carry out oxygen-evolving, plant-like photosynthesis. Earth’s oxygen-rich atmosphere and the cyanobacterial origin of plastids in plants are the two major evolutionary contributions made by cyanobacteria. Certain cyanobacteria are able to carry out nitrogen fixation. Cyanobacteria occur in various environments including water fresh and brackish water, oceans, and hot springs, terrestrial environments soil, deserts, and glaciers, and symbioses with plants, lichens, and primitive animals. In aquatic environments, cyanobacteria are important primary producers and form a part of the phytoplankton. They may also form biofilms and mats benthic cyanobacteria. In eutrophic water, cyanobacteria frequently form mass occurrences, so-called water blooms. Cyanobacteria were formerly called blue-green algae. Mass occurrences of cyanobacteria can be toxic. They have caused a number of animal poisonings and are also a threat to human full chapterURL in Water Quality MonitoringDaoliang Li, Shuangyin Liu, in Water Quality Monitoring and Management, What Is Blue-Green Algae?Blue-green algae BGA, also known as cyanobacteria, can range in colors from blues, greens, reds, and black. BGA can reduce nitrogen and carbon in water, but can also deplete dissolved oxygen when overabundant. Monitoring BGA is important because they pose a serious threat to water quality, ecosystem stability, surface drinking water supplies, and public health through toxin production and the large biomass produced in algal measures blue-green algae in real time through the in vivo fluorometry IVF technique. This method directly detects the fluorescence of a specific pigment in living algal cells and determines relative algal biomass. The BGA sensor does not receive interference from chlorophyll or full chapterURL Marine Algae A Wellspring of Bioactive Agents Towards Sustainable Management of Human WelfareAditya Shukla, ... Alok K. Sil, in Reference Module in Food Science, 2023Blue-Green Algae CyanophytaBlue-green algae can be found all throughout the world, even in locations where no other flora can survive. They were most likely the first organisms to release elemental oxygen O2 into the primordial atmosphere, which had previously been devoid of O2. As a result, blue-green algae are most likely to be responsible for the evolution of metabolic activities, which led to the emergence of higher species of animals and plants. In the literature, they are known by a number of names, the most frequent of which are Cyanophyta, Myxophyta, Cyanochloronta, and full chapterURL and Sugar Alcohol Production in Genetically Modified CyanobacteriaNiels-Ulrik Frigaard, in Genetically Engineered Foods, 2018AbstractCyanobacteria, previously known as blue-green algae, are photosynthetic microorganisms that are abundant in nature. Some cyanobacteria have been consumed by humans for centuries while others are known for their toxicity. The initial metabolic products of photosynthesis are sugar phosphates. Excess photosynthates in cyanobacteria are stored as polysaccharides primarily glycogen and may constitute up to 60% of the biomass. Thus cyanobacteria have a natural potential to produce sugars from photosynthesis using CO2 as the sole carbon source. Although cyanobacteria produce a limited number of sugar compounds naturally, genetic engineering can increase the diversity of produced sugars, as well as increase the production yield. Sucrose, fructose, glucose, glycerol, erythritol, and mannitol have been produced in genetically engineered cyanobacteria, although the yields need to be improved before these are of practical significance. It is possible that these and other more valuable simple sugar compounds, such as mannose, fucose, tagatose, and l-sugars can be produced in cyanobacteria on a commercially relevant full chapterURL Quality and SustainabilityP. Wang, C. Wang, in Comprehensive Water Quality and Purification, Climate impactCyanobacteria are a type of prokaryote. Outbreaks only occur when the population of cyanobacteria per unit of water increases drastically. The growth profile of cyanobacteria presents an S-shape curve, which indicates that a certain amount of time is needed for single cells and groups to develop. Environmental conditions, especially water temperature, significantly impact their growth rate. Cyanobacteria tend to become overpopulated at certain temperatures. Otherwise, the growth rate is inhibited and the population size remains low. In this way, climate plays an important role in early period of cyanobacteria growth. Zheng et al. 2008 reported that cyanobacteria outbreaks readily occurred over periods of 30 days during which sufficient nutrients were available, temperature remained above 18 °C, active accumulated temperature remained above 370 °Cd, weak wind conditions, and more than 208 h of sunlight. However, climate conditions such as high relative humidity, precipitation, and wind speed do not influence cyanobacteria outbreaks remarkable. Generally, July and August in the Taihu lake basin is usually favorable to cyanobacteria full chapterURL in Cyanobacteria a contribution to systematics and biodiversity studiesGuilherme Scotta Hentschke, Watson A. Gama Junior, in The Pharmacological Potential of Cyanobacteria, 2022AbstractCyanobacteria emerged on Earth about billion years ago and are the morphologically most diverse group amongst prokaryotes and the unique bacteria able to perform oxygenic photosynthesis. Most part of the cyanobacterial biodiversity is found growing in freshwater and terrestrial environments. Also, Cyanobacteria can colonize marine and extreme environments. The secondary metabolites produced by Cyanobacteria have promising bioactivities and can be applicable as pharmaceutical drugs. Currently, Cyanobacteria present 374 genera and among them, 232 genera are already confirmed by molecular tools. The current situation of Cyanobacteria systematics is complicated. Although it is mandatory to describe new genera based on the monophyletic concept of taxa, for higher taxonomical levels, all classifications systems consider para- or polyphyletic orders and subclasses. Based on that, this chapter presents the general aspects and biodiversity of Cyanobacteria and discusses trends in cyanobacterial full chapterURL
bagaimana cara cyanobacteria memperoleh makanannya